Enhancing Audio-Visual Affective Analysis via
Bidirectional Dynamic Cross-Modal Attention and
Masked Autoencoding

Yuheng Liang', Feng Liu*, Yu Yao?, Mingzhou Liu®, Jing Yuan?
School of Communications and Information Engineering
Jiangsu Key Laboratory of Intelligent Information Processing and Communication Technology
Nanjing University of Posts and Telecommunications, Nanjing, China
{1023010418, 1023010419, 1023162807, 1223014230} @njupt.edu.cn
fCorresponding author: liuf@njupt.edu.cn

Abstract—Affective computing plays a crucial role in en-
hancing human-computer interaction and supporting mental
health monitoring. However, two major challenges persist: (1)
how to effectively extract discriminative features that capture
subtle affective variations, and (2) how to model and align the
distributional discrepancies of multimodal features across spatial
and temporal domains to leverage complementary information
from different modalities. In this paper, we propose a novel
multimodal affective analysis framework to tackle these issues.
To capture fine-grained affective cues in the visual modality,
we introduce a hierarchical decoupling mechanism based on
a Masked Autoencoder (MAE), eliminating the need for large-
scale facial pre-training and aligning facial features with the
affective semantic space. For effective multimodal fusion, we
present a Bidirectional Dynamic Cross-Modal Attention (BDCA)
mechanism that adaptively models interactions between modal-
ities and enhances affective state estimation. The fused features
are then encoded via a transformer, and Valence-Arousal(V-A)
values are estimated through a fully connected layer. Experiments
on the challenging Aff-Wild2 dataset demonstrate the effec-
tiveness of our framework. Our method achieves Concordance
Correlation Coefficients (CCC) of 0.605 and 0.658 for Valence
and Arousal, respectively, outperforming existing state-of-the-art
methods. These results highlight the potential of our approach
in advancing audio-visual affective computing.

Index Terms—Audio-Visual Affective Computing, Valence and
Arousal, Cross-Modal Attention, Masked Autoencoder

I. INTRODUCTION

Affective computing plays a vital role in understanding
human mental states and supports applications such as mental
health assessment (e.g., detection of anxiety and depression)
and human-computer interaction [1]. Existing approaches to
affective analysis can be categorized into discrete affective
categorization and dimensional modeling. The former, based
on Ekman’s [2] theory of seven basic emotions , offers inter-
pretability but fails to capture the continuous, evolving nature
of real-world affective states. In contrast, dimensional models
like the Valence-Arousal(V-A) framework [3] characterize
valence as affective polarity and arousal as activation level,

This work was supported in part by the National Natural Science Foundation
of China under Grant 62177029.

enabling fine-grained temporal modeling. This framework has
become the foundation of dimensional affective analysis.

Despite progress, dimensional affective analysis still faces
two key challenges: (1) extracting discriminative features that
reflect subtle affective variations, and (2) aligning multimodal
features with distinct spatial-temporal characteristics to fully
leverage their complementarity.

To address these issues, research has shifted from unimodal
to multimodal affective analysis. Early unimodal methods [4]
suffer from noise sensitivity and limited robustness, as each
modality alone lacks context. In contrast, multimodal learning
[5] combines information from visual and acoustic sources,
significantly improving affective state estimation.In this work,
we propose a novel audio-visual affective analysis framework
that enhances both feature extraction and cross-modal fusion.
Traditional hand-crafted features [6] and CNN-based models
[7] struggle with illumination changes and data dependency.
Masked Autoencoders (MAE) [8] offer a promising self-
supervised alternative, but most affective analysis applications
[9] rely on large-scale facial expression pretraining. We intro-
duce a hierarchical decoupled fine-tuning strategy using MAE
that enables efficient, affective-aware visual representation
learning without requiring massive labeled datasets.

The audio contains rich affective cues embedded in spectral,
rhythmic, and prosodic patterns. However, the interaction be-
tween audio and visual modalities remains underexplored. To
capture complementary affective cues, we integrate multiple
audio features—VGGish [11], eGeMAPS, and MFCC [12].

Multimodal fusion remains challenging. Conventional early
and late fusion methods [14] lack the ability to model
deep inter-modal dependencies. Transformer-based attention
mechanisms [13] improve long-range modeling but still rely
on static fusion weights, unidirectional attention, and may
lose temporal nuance.To overcome these limitations, we pro-
pose a Bidirectional Dynamic Cross-Modal Attention (BDCA)
mechanism that dynamically models cross-modal interactions
and reallocates attention weights based on affective context.
BDCA enhances semantic alignment between modalities and
improves robustness against temporal variations.



Our main contributions are summarized as follows:

o We propose a hierarchical decoupling strategy based on
mask autoencoders for visual representation learning that
avoids costly pre-training in facial expression.

e We propose a BDCA mechanism that adaptively captures
intra- and inter-modal dependencies.

o Our method achieves state-of-the-art performance on the
Aff-Wild2 dataset, with CCC scores of 0.605 for Valence
and 0.658 for Arousal.

II. RELATED WORK

Traditional discrete affective categorization methods, though
highly interpretable, often struggle to capture nuanced and
continuous affective states. In contrast, the V-A dimensional
model [3] provides a continuous and fine-grained represen-
tation of affective dynamics and has become the mainstream
paradigm in audio-visual affective analysis.

Early affective analysis methods in the visual domain were
grounded in Ekman’s theory of basic emotions [2] and focused
on facial expression recognition. Advances in face detection
led to improvements in visual-based affective modeling, but
such methods are often sensitive to environmental noise,
occlusions, lighting variations, and cultural factors. To miti-
gate these limitations, researchers began exploring multimodal
approaches. Banse [15] emphasized the affective role of audio,
while Cohen [16] introduced a multimodal framework using
SVMs, demonstrating the complementary nature of visual and
audio cues.

With the rise of deep learning, multimodal affective com-
puting has made significant progress. Zheng [17] integrated
visual and audio features under the V-A framework, while
Poria [18] leveraged CNNs and RNNs to capture spatial and
temporal dependencies. Despite promising results, many exist-
ing methods fail to model the intricate intra- and inter-modal
relationships required for robust affective state estimation.

Facial expressions remain central to affective representation.
Spatial regions (e.g., eyes, mouth) encode localized semantics,
while temporal dynamics reflect evolving expressions. Early
approaches [19] used 2D CNNs with LSTMs, while later
works such as Temporal Convolutional Networks (TCNs) [20]
captured multi-scale temporal structure. Fan [22] enhanced
TCNs with spatial-temporal attention to better model dynamic
facial cues. More recently, self-supervised methods like MAE
[8] have shown promise in visual representation learning.
However, applications in affective computing [9] often rely
on extensive pretraining on facial datasets, increasing compu-
tational cost.

The audio modality offers affective cues through various
low- and high-level descriptors. MFCCs capture timbre-related
information, while eGeMAPS models prosodic and rhythmic
properties [12]. Combining handcrafted and deep features has
been shown to enhance robustness [21]. VGGish [11], trained
on large-scale audio corpora, has become a standard for audio
feature extraction. Deep learning approaches have explored
both 1D CNNs for waveform modeling and 2D CNNs for
spectrograms [14].

While multimodal affective analysis benefits from com-
plementary audio-visual cues, challenges persist in effective
fusion [10]. Feature heterogeneity and temporal misalignment
between modalities remain major bottlenecks. Early fusion
techniques—such as feature concatenation or element-wise
operations—struggle with cross-modal synchronization [24].
To address this, Yu [23] proposed selective attention mecha-
nisms that dynamically adjust modality importance, showing
improved robustness.

However, most existing approaches still inadequately cap-
ture both intra-modal dynamics and cross-modal synergy, and
lack mechanisms to adaptively reweight modalities based on
affective context. These limitations motivate our proposed
framework, which introduces a hierarchical MAE-based visual
feature extractor and a BDCA module. BDCA allows deep
semantic alignment across modalities and supports adaptive
fusion guided by affective state variations. The proposed
method is detailed in the following section.

III. METHODOLOGY

This section presents an overview of the proposed frame-
work, followed by detailed descriptions of the MAE-based
visual feature extractor and the BDCA fusion module.

A. Approach Overview

As shown in Figure 1, our framework integrates visual
and audio features for dimensional affective analysis using
a BDCA mechanism. The architecture consists of four main
components. First, visual and audio features are extracted
independently from video frames. Second, four-layer TCNs
are used to model intra-modal temporal dependencies. Third,
these temporally encoded features are fused via the BDCA
module, which adaptively captures complementary and syner-
gistic interactions across modalities. The fused representation
is then processed by a Transformer encoder to capture deeper
contextual dependencies, and finally, fully connected layers
output Valence and Arousal predictions.

B. MAE-based Visual Feature Extraction

Feature extraction is crucial in affective analysis, as it
directly influences the model’s ability to represent fine-grained
affective content. We propose a hierarchical fine-tuning strat-
egy based on a MAE, illustrated in Figure 2. Our method
leverages the MAE’s general-purpose pretraining for visual
reconstruction while adapting it to affective regression tasks.

Specifically, we freeze the lower layers responsible for low-
level visual encoding to retain generalization across domains,
and selectively fine-tune the upper layers that capture high-
level semantics. Compared to traditional domain-specific pre-
training paradigms, this strategy implicitly aligns fine-grained
facial expression features with the emotion semantic space by
decoupling layer-wise parameter updates, effectively avoiding
the need for large-scale facial image pretraining.

During fine-tuning, a 224x224x%3 image is divided into non-
overlapping 16x16 patches. Each patch is projected into a
1024-dimensional embedding via a linear projection layer.
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Fig. 1. Overall architecture of the proposed multimodal framework for dimensional affective analysis. Visual and Audio features are extracted, fused via

BDCA, and refined by a Transformer encoder for valence-arousal estimation.
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Fig. 2. Hierarchical fine-tuning strategy for the MAE encoder. Lower layers
are frozen to retain general visual representations, while higher layers and the
regression head are fine-tuned for V-A prediction.

To encode spatial relationships, fixed sinusoidal positional
embeddings are added. A class token (CLS) aggregates global
image information and is passed through the Transformer
layers. The output of the CLS token is used as the global
visual representation.

To balance efficiency and performance, a partial freezing
strategy is adopted: the patch embedding layer and the first
16 Transformer blocks are frozen, while the last 8 blocks and
the regression head are fine-tuned. This enables the model to
preserve general visual features while focusing on affective-
related semantics.

The resulting MAE encoder captures affective-relevant vi-
sual cues efficiently and transfers well to downstream tasks.
Fine-tuning is performed on static, partially cropped video
frames from the Aff-Wild2 training set (excluded from later
model training). Only image data are used at this stage, audio
and temporal signals are not introduced, to ensure that the
extracted visual features remain modality-pure.

C. Audio Feature Extraction

We employ a multi-feature strategy to capture diverse af-
fective cues from the audio modality. First, we use VGGish
as the primary audio encoder to extract 128-dimensional
representations. Trained on the large-scale VGGSound dataset,
VGGish captures a broad spectrum of acoustic features and is
used here as a fixed feature extractor without further fine-
tuning.

In addition, we extract two widely used handcrafted audio
descriptors using openSMILE [12]: MFCC and eGeMAPS.
The MFCC features comprise 39 dimensions, including 13
base coefficients along with their first- and second-order
derivatives, capturing the spectral and tonal variations that
correlate with affective intensity. The eGeMAPS feature set
consists of 23 dimensions, encoding affective-related prosodic
and physiological parameters such as pitch variation, loudness,
and speech rate.

D. Bidirectional Dynamic Cross-Modal Attention

To capture the synergistic and complementary relation-
ships between audio and visual modalities, we propose a
BDCA mechanism, as illustrated in Figure 3. BDCA employs
two cross-attention modules—Visual-Driven Audio Attention
(VDAA) and Audio-Driven Visual Attention (ADVA)—to
enable bidirectional mapping between modalities. This design
facilitates full modality interaction, enhances fine-grained fea-
ture representation, and adaptively reweights modality contri-
butions to improve affective state estimation, overcoming the
limitations of static fusion and unimodal modeling. Given a
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Fig. 3. Tllustration of the BDCA fusion mechanism. Two cross-attention

modules are constructed: VDAA and ADVA. A dynamic weighting module
adaptively balances original and cross-attended features.

video sequence S with L frames, audio and visual streams are
encoded by four-layer TCNs, producing:

12 L dyx L
Xy ={z,,z5,--- ,x,} €R ,

— 1 .2 L dg XL
Xfl*{xaaxav"‘ 7:17a} €eR

where d, and d, are the dimensions of visual and audio
features, respectively.

Each modality undergoes cross-attention. For VDAA, visual
features X, serve as queries, while audio features X, provide
keys and values:

K

A, = Softmax @Ky Vo (1)
Vdg

The attended features A, are added to X, followed by ReLU

activation:

Xatt,'u = ReLU(Au + Xv) (2)

To adaptively regulate the importance of cross-attended and
original features, we introduce a Dynamic Weight module,
shown in Figure 3. A gating layer learns a weighted com-
bination:

Wgo,v = X;t,qul,v 3
eWao,0/T
Gy=—F—— 4)

T ST

where Wy, € R%*2 is a learnable parameter, and 71" is
a temperature term (empirically set to 0.5) to smooth the
softmax output [25]. K denotes the number of output units
of the gating layer, which is 2. G, € RL*2 contains attention
scores for the original and cross-attended features.

Each column of G, is broadcasted to match feature dimen-
sions, yielding G,o and G,1. These are used to reweight the
original and attended features:

Xatt,gv = ReLU (Xv 2y G’UO + Xatt,v 02y le) (5)

where ® denotes element-wise multiplication.

This dynamic fusion process allows the model to select
or suppress cross-attended or original features based on their
relevance. For highly complementary modalities, the attention
weight for cross-attended features approaches 1, while that for
the original approaches 0, and vice versa. This mechanism
introduces soft regularization and improves generalization
across varying affective contexts.

The ADVA module operates symmetrically, using audio fea-
tures as queries and visual features as keys/values, producing
Xatt,ga- The final joint multimodal representation is obtained
by concatenating the gated features:

Xtused = [Xatt,g'u§ Xatt,ga] 6)

This fused embedding serves as input to the Transformer
encoder for final affect prediction.

IV. EXPERIMENTS AND RESULTS

This section presents the experimental setup, evaluation
results, and ablation studies, highlighting the effectiveness and
robustness of the proposed framework in comparison with
state-of-the-art methods.

A. Aff-wild2 Dataset

We conduct experiments on the Aff-Wild2 dataset [26],
the largest and most diverse dataset in affective computing.
It consists of 594 videos (approx. 3 million frames) from
584 subjects, including 16 videos with two annotated indi-
viduals. Videos are sourced from YouTube and captured in
uncontrolled environments, making them well-suited for real-
world affective analysis. Annotations for Valence and Arousal
are continuously labeled within [-1, 1], averaged across four
expert annotators. To ensure subject independence, the dataset
is split into training, validation, and test subsets with no subject

overlap.
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Fig. 4. Example trajectories of Valence and Arousal annotations over time
for a sample video from Aff-Wild2.



Figure 4 illustrates an example of V-A annotation curves
over time, highlighting challenges such as diverse expressions,
rapid affect shifts, and facial occlusions. These characteristics
underscore the dataset’s complexity and realism.

Figure 5 shows the histogram distributions of Valence and
Arousal. Both distributions are positively skewed, indicating a
higher prevalence of positive valence and arousal levels among
participants.
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Fig. 5. Histogram of valence and arousal annotations in Aff-Wild2.

As a baseline, we benchmark against the 8th ABAW [36]
Challenge model, which uses a ResNet-50 [27] backbone
pretrained on ImageNet. A linear output layer predicts Va-
lence and Arousal, achieving CCC scores of 0.24 and 0.20,
respectively.

Before feature extraction, all videos are segmented into
frames and processed with RetinaFace [28], which extracts
facial bounding boxes and five landmarks. The faces are
aligned via similarity transformation using eye, nose, and
mouth landmarks, and resized to 224x224x3. Pixel intensities
are normalized to [-1, 1]. Frames with invalid annotations
(e.g., value = -5) are discarded. To address missing labels, we
apply a refinement approach inspired by Wang [29], using the
correlation between discrete and continuous labels to maintain
temporal continuity.

B. Evaluation Metric

The dimensional sentiment recognition task involves
continuous-valued sentiment prediction. The model design
and optimization strategy must prioritize the stability of the
regression task. The evaluation metric used is the average of
the CCC for both Valence and Arousal:

CCC, +CCC,
2

CCC quantifies the agreement between two time series
(true and predicted values for all videos) by scaling their
correlation coefficients with the mean square deviation. This
approach penalizes predictions that are well-correlated with
the true values but numerically skewed, in proportion to the
deviation. CCC ranges from -1 to 1, where +1 indicates perfect
agreement, and -1 indicates perfect disagreement. A higher
CCC value indicates better alignment between the predicted
and true values. CCC is defined as follows:

(7
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Where p,, is the Pearson Correlation Coefficient, S, and
Sy represent the variance of the predicted and true values of all
the video Valence/Arousal dimensions, and Z and ¥ represent
the mean of the predicted and true values, respectively.

C. Implementation Details

The proposed model is implemented using PyTorch and
trained on two NVIDIA GeForce RTX 4090 GPUs (each
with 24GB memory) to ensure computational efficiency and
resource sufficiency.

Considering the in-the-wild nature of Aff-Wild2, we apply
several data augmentation techniques to improve general-
ization. These include random rotation (x10°) to simulate
natural head tilts, horizontal flipping to increase robustness,
and random cropping and scaling to reduce background noise
and emphasize facial regions. All input frames are normalized
with a mean of 0.389 and a standard deviation of 0.198 to
enhance training stability and accelerate convergence.

Both visual and audio modalities are segmented into over-
lapping temporal windows of 300 frames with a stride of 200,
resulting in a 100-frame overlap between adjacent segments.
This strategy captures temporal dependencies and affective
transitions while increasing training samples for temporal
modeling. Each window is independently passed through a
four-layer TCNs to model intra-modal temporal dynamics,
producing 128-dimensional representations per modality.

To prevent gradient instability and improve convergence, we
adopt a learning rate warm-up strategy. The learning rate is
linearly increased from 3 x 1075 to 5 x 1072 in the early
training stages. Subsequently, we apply a cosine annealing
learning rate scheduler (Cosine Annealing Warm Restarts) to
dynamically adjust the learning rate across epochs, promoting
smoother optimization and improved generalization.

D. Results and discussion

Table I presents the experimental results of our proposed
framework on the V-A task test set. The CCC is used as the
evaluation metric for both Valence and Arousal predictions.
Fold O corresponds to the official test set, while folds 1-5
represent the results from five-fold cross-validation.



TABLE I
COMPARISON OF CCC SCORES FOR VALENCE, AROUSAL, AND THEIR
AVERAGE ACROSS TEST FOLDS (FOLD 0-5)

Fold Valence (CCC) Arousal (CCC)  Average
Fold 0 0.582 0.646 0.614
Fold 1 0.562 0.613 0.588
Fold 2 0.556 0.605 0.581
Fold 3 0.605 0.658 0.632
Fold 4 0.539 0.689 0.614
Fold 5 0.582 0.650 0.616
Baseline 0.240 0.200 0.220

As shown in the table, our method significantly outperforms
the baseline across all folds. These results demonstrate that
the proposed MAE-based visual feature extractor effectively
captures fine-grained affective cues, while the BDCA mecha-
nism enables efficient and adaptive integration of audio-visual
information. Together, these components substantially improve
the model’s performance on continuous affect estimation in
real-world scenarios.

1) Comparison with State-of-the-Art Methods: Table II
compares our BDCA framework with top submissions to
the 8th ABAW Challenge on the Aff-Wild2 dataset. Our
method achieves the highest CCC scores across all metrics,
demonstrating strong generalization in real-world affective
computing.

TABLE II
COMPARISON WITH TOP SUBMISSIONS FROM THE 8TH ABAW
CHALLENGE (2025) ON THE AFF-WILD2 DATASET.

Method Valence (CCC) Arousal (CCC)  Average
Baseline 0.240 0.200 0.220
CAS-MAIS 0.327 0.304 0.316
Charon [35] 0.504 0.412 0.458
AIWELL-UOC [34] 0.468 0.492 0.480
HSEmotion [33] 0.494 0.551 0.522
CtyunAl [32] 0.546 0.611 0.578
DeepAVER-CRIM [31] 0.561 0.620 0.590
USTC-IAT-United [30] 0.577 0.623 0.600
BDCA(Ours) 0.605 0.658 0.632

Several leading methods employed multimodal fusion
techniques. USTC-IAT-United [30] used pre-trained ResNet
and VGG encoders with TCNs and cross-modal attention.
DeepAVER-CRIM [31] extended a recursive joint cross-
attention framework with gating mechanisms to handle varying
modality complementarity. In contrast, our BDCA uses a sim-
pler, non-recursive attention structure with dynamic weighting,
offering better performance and lower complexity.

In terms of visual modeling, CtyunAl [32] fine-tuned CLIP
on Aff-Wild2, while Charon [35] combined MAE, TCN,
and Mamba for long-term temporal modeling. Unlike these
approaches, we directly fine-tune MAE on the target task

without external facial datasets, achieving superior results with
fewer resources.

Other teams, such as HSEmotion [33] and AIWELL-UOC
[34], incorporated additional modalities and handcrafted fusion
designs. While effective, these methods may introduce greater
architectural complexity. In general, BDCA achieves state-of-
the-art performance with a streamlined design and a reduced
reliance on large-scale pretraining.

2) Ablation Studies: To evaluate the individual contri-
butions of key components in our framework, we conduct
ablation studies on: (1) MAE fine-tuning, and (2) the BDCA
fusion mechanism.

Effect of MAE Fine-Tuning. To evaluate the impact of
visual representation learning strategies, we compare three
configurations, as shown in Table III: (1) using MAE features
without fine-tuning (MAE w/o FT), (2) using features from
the Fuxi [9] model, which is pretrained on large-scale facial
expression datasets and fine-tuned on Aff-Wild2, and (3) our
proposed method, which fine-tunes the MAE encoder directly
on Aff-Wild2 without relying on large-scale facial pretraining.
In this experiment, only visual features were used, and the

TABLE III
COMPARISON OF VISUAL FEATURE EXTRACTION METHODS ON
AFF-WILD2.
Method Valence (CCC) Arousal (CCC)  Average
MAE w/o FT 0.348 0.419 0.384
Fuxi [9] 0.540 0.557 0.549
MAE 0.554 0.595 0.575

BDCA module was excluded to isolate the effect of visual
encoding. These results demonstrate that self-supervised rep-
resentation learning combined with task-specific fine-tuning is
highly effective for in-the-wild affective analysis, even without
access to large-scale affective-labeled facial datasets.

Effect of the BDCA Module. We further analyze the
contribution of the BDCA module by comparing five con-
figurations, as shown in Table IV. Using only the audio or
visual modality leads to suboptimal performance, confirming
the importance of multimodal integration. Replacing BDCA
with simple concatenation of temporal audio-visual features
yields slight improvements but still underperforms.

Introducing cross-modal attention (BDCA w/o DW) sig-
nificantly boosts performance by enhancing inter-modal in-
teractions. Adding the dynamic weighting mechanism further
improves the average CCC by 1.94%, demonstrating its effec-
tiveness in context-aware modality balancing. Overall, the full
BDCA module achieves the best performance, highlighting its
capacity to extract richer affective representations and adapt
to complex affective dynamics.

V. CONCLUSION

This paper presents a novel and efficient multimodal frame-
work for dimensional affective analysis, addressing key chal-
lenges such as dynamic temporal variation and the complexity



TABLE IV
IMPACT OF BDCA AND ITS COMPONENTS ON CCC PERFORMANCE.

Configuration Valence (CCC) Arousal (CCC)  Average
Baseline 0.240 0.200 0.220
Only Audio 0.212 0.334 0.273
Only Visual 0.554 0.595 0.575
Concat w/o BDCA 0.551 0.635 0.593
BDCA w/o DW 0.598 0.640 0.619
BDCA 0.605 0.658 0.632

of cross-modal fusion. To enhance feature quality and temporal
modeling, we adopt a hierarchical MAE-based encoder with
TCNs, enabling effective capture of fine-grained affective
dynamics in both visual and audio modalities. Furthermore,
the proposed BDCA module adaptively models inter-modal
correlations and adjusts modality weights based on contextual
reliability, improving robustness in real-world scenarios. A
Transformer encoder is further employed to strengthen multi-
scale temporal dependency modeling. Extensive experiments
on the Aff-Wild2 dataset demonstrate that our approach out-
performs state-of-the-art methods, confirming its ability to
leverage audio-visual complementarity for accurate and robust
affective state estimation. While the proposed model achieves
strong performance, future work will explore deeper context-
aware affect modeling and enhance cross-domain general-
ization to support broader deployment in human-computer
interaction and mental health monitoring.
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