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Abstract—Continuous emotion recognition (CER) in the
valence-arousal (VA) space is a central task in affective computing
and human-computer interaction. While recent deep learning
approaches have achieved notable progress using visual inputs,
unimodal systems often fail to capture the full spectrum of human
emotions. In this paper, we propose LightMamba, a novel multi-
modal audio-visual framework designed for efficient and accurate
CER. Our method integrates visual features extracted from a pre-
trained Masked Autoencoder (MAE) with audio representations
from both VGGish and openSMILE. These fused features are
processed by a hybrid temporal modeling architecture comprising
a Temporal Convolutional Network (TCN) and a lightweight
Mamba block for long-range sequence learning. Experiments on
the Aff-Wild2 dataset demonstrate that LightMamba achieves
state-of-the-art performance with an average CCC of 0.637,
outperforming existing methods while maintaining lower GPU
memory usage and competitive training speed. These results
highlight the potential of Mamba-based architectures for scalable
and deployable affective computing systems.

Index Terms—Continuous Emotion Recognition, Mamba,
Valence-Arousal, Audio-Visual Learning

I. INTRODUCTION

Affective computing has emerged as a key area in human-
computer interaction (HCI), aiming to endow machines with
the ability to perceive, understand, and respond to human
emotions [1]. Among various emotion recognition paradigms,
continuous emotion recognition (CER) in the Valence-Arousal
(VA) space has gained increasing attention, offering a richer
and more flexible emotional representation than traditional
discrete classifications [2]. In this framework, valence mea-
sures the positivity or negativity of an emotion, while arousal
describes the level of activation or intensity.

Recent advances in deep learning have significantly im-
proved the performance of video-based emotion recognition
systems. Visual cues such as facial expressions, head move-
ments, and eye gaze are widely used to infer affective states
[3]. However, relying solely on visual data is often insufficient
due to challenges such as occlusion, illumination variance,
and loss of subtle temporal dynamics. Audio, as another
key modality, conveys complementary emotional information
through prosody, tone, and rhythm [4]. The fusion of audio
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and visual modalities has thus become a promising direction
for building robust and accurate CER systems.

Despite these developments, two critical challenges per-
sist: (1) effectively modeling long-term dependencies across
time, which are crucial for understanding emotional dynamics,
and (2) integrating multimodal features in a lightweight and
scalable architecture, particularly for real-time or resource-
constrained applications. Traditional sequence models such
as LSTM [5] and Transformer [6] have demonstrated strong
temporal modeling capabilities, but often at the cost of high
computational complexity.

To address these challenges, we propose LightMamba, a
novel multimodal audio-visual framework for continuous emo-
tion recognition. Our model extends a previous video-based
system by incorporating audio features extracted via both
VGGish and openSMILE toolkits, and introduces a lightweight
early fusion mechanism. The concatenated multimodal fea-
tures are processed by a four-layer Temporal Convolutional
Network (TCN) followed by a Mamba block—a recently pro-
posed selective state-space model designed for efficient long-
sequence modeling [7]. Finally, a fully connected layer outputs
the predicted valence-arousal values. The main contributions
of this paper are as follows:

• We propose LightMamba, a novel and lightweight mul-
timodal framework for continuous emotion recognition,
which integrates visual and audio features using an early
fusion strategy.

• We design a dual-branch audio feature extractor that com-
bines VGGish and openSMILE embeddings to capture
complementary acoustic cues for emotion modeling.

• We employ a hybrid temporal modeling architecture that
leverages a TCN for local dynamics and the Mamba state-
space model for efficient long-sequence learning, achiev-
ing superior performance on the Aff-Wild2 benchmark.

II. RELATED WORK

A. Continuous Emotion Recognition
CER aims to predict human emotional states along contin-

uous dimensions, most commonly valence and arousal, rather
than discrete emotion categories. The valence-arousal model,
first proposed by Russell [2], provides a two-dimensional rep-
resentation that enables more nuanced emotional interpretation



in real-world settings. Recent CER research has leveraged deep
learning to improve temporal affect modeling from video [8],
audio [4], or both modalities. Datasets like Aff-Wild2 have
become the standard benchmark for CER due to their large-
scale, in-the-wild annotations [9].

B. Multimodal Emotion Recognition

Multimodal emotion recognition [10] seeks to combine
complementary cues from different input sources—typically
facial expressions, vocal prosody, and body language—to
improve robustness and accuracy. Early fusion strategies con-
catenate features from different modalities before learning
[11], while late fusion or attention-based fusion combines
modality-specific predictions or dynamically weighs features
[12]. Audio has been shown to contribute significantly to
emotion understanding, especially when visual signals are un-
reliable [1]. In this work, we follow the early fusion paradigm
and utilize both VGGish [13] and openSMILE [14] extractors
to obtain diverse acoustic features.

C. Temporal Modeling for Emotion Dynamics

Modeling the temporal evolution of emotions is critical
for CER tasks. Recurrent models such as LSTM and GRU
have been widely applied due to their ability to handle
sequential data [5], but they suffer from vanishing gradients
and computational inefficiency over long sequences. More
recently, convolution-based models like TCNs have gained
popularity for their parallelism and temporal receptive fields
[15]. Transformer-based architectures have also been explored
but often require significant computational resources [6].

Mamba, a recently proposed selective state-space model,
offers a compelling alternative for long-sequence modeling.
It achieves linear-time complexity with strong performance
across sequence tasks by combining state-space recurrence
with efficient parallel operations [7]. We adopt a hybrid archi-
tecture combining TCN and Mamba to benefit from both local
temporal patterns and global sequence context in a lightweight
manner.

III. METHOD

A. Framework Overview

As shown in Fig. 1, the proposed LightMamba framework is
a multimodal architecture that integrates both visual and audio
information for continuous emotion recognition. Specifically,
visual features are extracted from cropped video frames using
a Masked Autoencoder (MAE), while audio features are ob-
tained using two parallel extractors: VGGish and openSMILE.
The resulting features from all three branches are concatenated
and fed into a four-layer TCN to capture local temporal
patterns. A Mamba block is then used to model long-range
dependencies efficiently, followed by a fully connected layer
that predicts valence-arousal values for each frame.

B. Visual Feature Extraction

We adopt a MAE with a ViT-Large backbone to extract
high-level visual features from facial video frames. Each
frame is cropped to the facial region, resized to fit the MAE
input, and normalized accordingly. To reduce overfitting and
improve generalization, we load pretrained weights and apply
partial fine-tuning: the patch embedding layer and the first 16
Transformer blocks are frozen, while the remaining layers are
trained on the emotion recognition task.

The CLS token from each frame serves as a compact global
descriptor of facial expression. The visual feature extraction
process is the same as in our previous work Charon [26].

Let fv
t ∈ R1024 denote the visual feature at time step t.

These features are temporally aligned with the audio features
and passed to the subsequent fusion and temporal modeling
modules.

C. Audio Feature Extraction

To complement the visual modality, we incorporate a dual-
branch audio feature extraction module that captures both low-
level acoustic and high-level semantic representations from
speech signals. The input audio is extracted from the same
video as the visual stream and synchronized at the frame level.

VGGish Feature Branch: We utilize a pretrained VGGish
model to extract high-level audio embeddings from the raw
waveform. The audio signal is first converted into log mel-
spectrograms and then fed into the VGGish network, which
outputs 128-dimensional embeddings for each segment. These
features encode semantic and prosodic characteristics such
as tone, pitch, and rhythm that are relevant to emotional
expression.

openSMILE Feature Branch: In parallel, we employ
the openSMILE toolkit to extract hand-crafted low-level de-
scriptors (LLDs), including pitch, energy, MFCCs, jitter, and
shimmer. We use the widely adopted eGeMAPS feature set,
resulting in a 62-dimensional feature vector per frame. These
features are known to be effective for paralinguistic tasks and
complement the deep features from VGGish.

Fusion and Alignment: The extracted VGGish and openS-
MILE features are concatenated to form a 190-dimensional
audio representation:

fa
t = Concat(fVGGish

t , fSMILE
t ) ∈ R190

Each audio feature vector fa
t is temporally aligned with the

corresponding visual feature fv
t at the same time step t,

ensuring synchronous multimodal fusion in the next stage.

D. Temporal Modeling

To capture both local and long-range temporal dynamics
in emotional expressions, we adopt a two-stage modeling
approach that combines a TCN and a Mamba-based state-
space encoder.

Given a sequence of multimodal embeddings F = {ft}Tt=1,
where ft ∈ R1214 represents the concatenated visual and audio



Fig. 1. Architecture of the proposed LightMamba model. Visual features are extracted using MAE, and audio features are obtained from VGGish and
openSMILE. The fused features are processed by a four-layer TCN followed by four Mamba blocks for temporal modeling. The final regression head outputs
valence and arousal values per frame.

features at time step t, we first apply a four-layer TCN to
model short- and mid-range temporal dependencies:

G = TCN(F), G = {gt}Tt=1, gt ∈ RD

Each TCN layer consists of dilated 1D convolutions with
residual connections and ReLU activations. The dilation rate
increases exponentially (1, 2, 4, 8), allowing the network to
capture wider receptive fields without increasing model depth.

E. Mamba Encoder

The TCN-encoded sequence G is then passed to a four-layer
Mamba encoder to further model long-term temporal relation-
ships efficiently. Mamba is a recent state-space model that
combines structured convolutional operations with dynamic
state transitions, offering linear-time computation and strong
sequence modeling capacity [7].

As shown in Fig. 2, each Mamba block processes the input
sequence X ∈ RB×L×D through two parallel branches:

• The first branch applies a linear projection, depthwise
convolution, and SiLU activation, followed by a selective
state-space model (SSM).

• The second branch applies a separate linear projection
and SiLU activation, which acts as a dynamic gating
signal.

The outputs of the two branches are fused via element-wise
multiplication and projected back to the feature space. The
output at each time step is given by:

ht = W2 · (SSM(σ(Conv(W1X)))⊙ σ(W3X))

where W1, W3, and W2 are learnable projections, Conv(·)
is a depthwise convolution, σ is the SiLU activation, and ⊙
denotes element-wise multiplication.

We stack four Mamba blocks to enhance modeling depth.
The final output H = {ht}Tt=1 is fed into a regression head to
predict the frame-level valence and arousal values:

ŷt = FC(ht), ŷt ∈ R2

Fig. 2. Internal structure of the Mamba-based temporal module. The input
is processed through two parallel branches: one with convolution and SSM,
the other with gating. Their outputs are fused via element-wise multiplication
and projected before regression.

This two-stage modeling design enables LightMamba to
effectively capture both transient changes and global emotional
trajectories in an efficient and scalable manner.



IV. EXPERIMENTS AND RESULTS

A. Aff-Wild2 Dataset

We conduct all experiments on the Aff-Wild2 dataset [17],
the largest and most diverse benchmark in affective computing.
The dataset consists of 594 videos (approximately 3 million
frames) featuring 584 unique subjects, including 16 videos
with two annotated individuals. The videos are collected
from YouTube and recorded under uncontrolled, in-the-wild
conditions, making Aff-Wild2 highly representative of real-
world affective behavior.

Each frame is continuously annotated for valence and
arousal within the range of [−1, 1], and the final labels are
obtained by averaging the annotations from four expert raters.
To ensure subject independence and avoid data leakage, the
dataset is partitioned into training, validation, and test sets
with no overlapping individuals.

Figure 3 illustrates the histogram distributions of valence
and arousal across the dataset. Both distributions exhibit a
positive skew, indicating that participants tend to express more
positive and high-arousal emotions in the collected data.

Fig. 3. Histogram of valence and arousal annotations in the Aff-Wild2 dataset.

For benchmarking, we use the baseline model provided by
the 8th ABAW Challenge [22], which employs a ResNet-50
[18] backbone pretrained on ImageNet. A linear regression
head is used to predict valence and arousal values, achieving
CCC scores of 0.24 and 0.20, respectively.

Prior to feature extraction, all videos are segmented into
individual frames and preprocessed using RetinaFace [16]
to extract facial bounding boxes and five facial landmarks.
The faces are then aligned using a similarity transformation
based on eye, nose, and mouth landmarks, and resized to

224×224×3. Pixel values are normalized to the range [−1, 1].
Frames with invalid annotations (e.g., values equal to −5) are
discarded.

To handle missing or inconsistent labels, we adopt a refine-
ment strategy inspired by Wang et al. [23], which leverages
the correlation between discrete and continuous annotations to
enforce temporal consistency and improve label quality.

B. Implementation Details
The proposed model is implemented using PyTorch and

trained on two NVIDIA GeForce RTX 4090 GPUs (each with
24GB memory), ensuring sufficient computational resources
for large-scale sequence modeling.

Considering the in-the-wild nature of the Aff-Wild2 dataset,
we apply several data augmentation techniques to enhance
model generalization. These include random rotation within
±10◦ to simulate natural head movements, horizontal flip-
ping to increase invariance to facial orientation, and random
cropping and scaling to reduce background distractions and
emphasize facial regions. All input images are normalized
using a mean of 0.389 and a standard deviation of 0.198, which
stabilizes training and accelerates convergence.

The audio-visual features are aligned frame-wise and seg-
mented into fixed-length windows of 300 frames with a stride
of 200. This allows the model to learn from overlapping
temporal contexts while maintaining computational efficiency.
Each windowed sequence is processed through a four-layer
TCN with exponentially increasing dilation rates to capture
short- and mid-range temporal dependencies.

The output of the TCN is passed through a four-layer
Mamba encoder, which models long-range temporal dependen-
cies in a memory-efficient manner. Finally, a fully connected
regression head predicts frame-level valence and arousal val-
ues.

Training is conducted for 50 epochs using the AdamW
optimizer with an initial learning rate of 3×10−4 and a weight
decay of 10−3. A linear warm-up is applied over the first 5
epochs, and dropout with a rate of 0.3 is used throughout the
temporal modules to prevent overfitting.

C. Evaluation Metrics
We evaluate the model performance using the Concordance

Correlation Coefficient (CCC), a standard metric for continu-
ous emotion prediction tasks. CCC measures the agreement
between predicted and ground-truth sequences, considering
both correlation and mean squared differences.

Given prediction x and ground truth y, the CCC is defined
as:

CCC =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2

where ρ is the Pearson correlation coefficient, µx, µy are the
means, and σx, σy are the standard deviations of x and y,
respectively.

We compute CCC separately for valence (CCCv) and
arousal (CCCa), and report the average:

CCCavg =
CCCv + CCCa

2



Higher CCC values indicate better alignment between pre-
dictions and annotations, with a maximum score of 1 indicat-
ing perfect agreement.

D. Results and Comparison

1) Five-Fold Cross-Validation: To evaluate the robustness
and generalization capability of LightMamba, we perform five-
fold cross-validation on the Aff-Wild2 training set. Table I
presents the CCC scores for valence, arousal, and their average
across different folds.

TABLE I
COMPARISON OF CCC SCORES FOR VALENCE, AROUSAL, AND THEIR

AVERAGE ACROSS TEST FOLDS (FOLD 1–5)

Fold Valence (CCC) Arousal (CCC) Average

Fold 1 0.543 0.575 0.559
Fold 2 0.516 0.579 0.548
Fold 3 0.610 0.664 0.637
Fold 4 0.569 0.663 0.616
Fold 5 0.567 0.648 0.608

Baseline 0.240 0.200 0.220

The results demonstrate that LightMamba achieves con-
sistently high performance across different folds, with an
average CCC score of 0.637 on Fold 3—the highest among all.
Compared to the baseline model, LightMamba improves the
average CCC by over 40%, showing excellent generalization
and robustness across varying data distributions.

2) Comparison with State-of-the-Art Methods: Table II
compares our proposed LightMamba framework with top-
performing submissions from the 8th ABAW [22] Challenge
on the Aff-Wild2 dataset. LightMamba achieves the highest
CCC scores across all metrics, demonstrating strong gen-
eralization and robustness in real-world affective computing
scenarios.

TABLE II
COMPARISON WITH TOP SUBMISSIONS FROM THE 8TH ABAW

CHALLENGE (2025) ON THE AFF-WILD2 DATASET.

Method Valence (CCC) Arousal (CCC) Average

Baseline 0.240 0.200 0.220
CAS-MAIS 0.327 0.304 0.316
Charon [26] 0.504 0.412 0.458
AIWELL-UOC [25] 0.468 0.492 0.480
HSEmotion [24] 0.494 0.551 0.522
CtyunAI [21] 0.546 0.611 0.578
DeepAVER-CRIM [20] 0.561 0.620 0.590
USTC-IAT-United [19] 0.577 0.623 0.600

LightMamba (Ours) 0.610 0.664 0.637

Several leading methods adopted multimodal fusion strate-
gies. For example, USTC-IAT-United [19] employed pre-
trained ResNet and VGG encoders in conjunction with TCNs
and cross-modal attention mechanisms. DeepAVER-CRIM
[20] introduced a recursive joint cross-attention framework

with gating modules to manage dynamic modality complemen-
tarity. These designs, although effective, often involve complex
architectures or significant computational overhead.

In contrast, our proposed framework, LightMamba, fo-
cuses on lightweight and efficient multimodal integration. It
combines high-level visual features extracted from a MAE
with complementary audio features derived from VGGish and
openSMILE. These modalities are fused early and passed
through a hybrid temporal modeling structure that leverages
both TCNs and the Mamba state-space model for efficient
long-term sequence learning.

LightMamba is an extension of our previous work, Charon
[26], which relied solely on visual inputs. By introducing
multimodal fusion, LightMamba captures richer affective cues
and achieves significant performance gains with only a modest
increase in complexity. Unlike methods that depend on ex-
ternal pretraining datasets or handcrafted alignment modules,
LightMamba directly fine-tunes the MAE on Aff-Wild2 and
processes synchronized audio-visual sequences end-to-end.

Other teams, such as HSEmotion [24] and AIWELL-UOC
[25], also explored multimodal fusion using handcrafted mod-
ules or multiple expert-designed branches. While these meth-
ods achieve competitive results, they often require extensive
tuning. LightMamba, on the other hand, achieves state-of-
the-art performance with a streamlined architecture, reduced
memory usage, and better deployability, making it well-suited
for practical affective computing scenarios.

3) Ablation Study: To evaluate the computational efficiency
and modeling effectiveness of the Mamba block, we perform
an ablation study by replacing it with a standard Transformer
encoder of comparable hidden size and layer depth. The
two models are compared in terms of total parameters, GPU
memory usage, training time per epoch, and average CCC
score on the validation set, as shown in Table III.

TABLE III
COMPARISON BETWEEN MAMBA AND TRANSFORMER-BASED TEMPORAL

MODULES.

Method Params GPU Mem Time/Epoch CCC Avg

Transformer 85.7M 7.8 GB 23s 0.593
LightMamba 116.5M 4.8 GB 24s 0.637

Although LightMamba has a slightly higher parameter count
due to its multimodal fusion components, its temporal model-
ing module—based on Mamba—achieves significantly lower
GPU memory consumption (4.8 GB vs. 7.8 GB). This demon-
strates that Mamba offers a more memory-efficient design,
which is beneficial for deployment on resource-constrained
platforms.

Furthermore, the per-epoch training time of both models is
nearly identical (24s vs. 23s), indicating that Mamba’s linear-
time state-space modeling introduces no additional computa-
tional overhead compared to the Transformer. More impor-
tantly, LightMamba achieves a substantial performance gain
of +4.4% in average CCC, validating the superior temporal



modeling ability of Mamba over Transformer in continuous
emotion recognition tasks.

Overall, these results highlight that Mamba not only im-
proves predictive performance but also enhances resource
efficiency, making LightMamba a practical and scalable frame-
work for real-world affective computing applications.

V. CONCLUSION

In this paper, we proposed LightMamba, a lightweight
and effective multimodal framework for continuous emotion
recognition in the valence-arousal space. By integrating high-
level visual features extracted via a pretrained MAE with
complementary audio features obtained from both VGGish
and openSMILE, the proposed model captures rich emotional
representations from both facial expressions and vocal cues.

To efficiently model the temporal evolution of emotions, we
employed a hybrid architecture consisting of a TCN for local
dynamic encoding and a Mamba-based sequence model for
long-range dependency learning. Extensive experiments on the
Aff-Wild2 benchmark demonstrate that LightMamba achieves
state-of-the-art performance while maintaining a significantly
lower memory footprint and comparable training speed com-
pared to Transformer-based counterparts.

The results confirm that Mamba is not only effective for
emotion modeling but also offers practical advantages in terms
of computational efficiency and deployment scalability. As
such, LightMamba provides a promising solution for real-
time affective computing applications, particularly in memory-
constrained or latency-sensitive environments.

We believe that this work contributes a novel perspective to
the field of affective computing by demonstrating the benefits
of combining selective state-space modeling with multimodal
fusion. In future work, we plan to further explore modality-
aware fusion mechanisms and extend our model to handle
more complex multimodal interaction scenarios, thereby ad-
vancing the development of emotionally intelligent human-
computer interaction systems.
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